

HTC-P2P Timber Panel Connector

Product Technical Datasheet CLT Panel to Panel Connector Update: Mar 25

HTC-P2P Timber Panel Connector

High-performance timber panel-to-panel connector

Linked Approvals/Certificates and Instructions for use

Approvals/certificates

Approval no	Application / loading condition	Authority / Laboratory	Date of issue
ETA-24/1199	Static and quasi-static, Seismic	OiB, Österreichisches Institut für Bautechnik	11-02-2025

The instructions for use can be viewed using the link in the instructions for use table or the QR code/link in the Hilti webpage table

Instructions for use (IFU)

Material	IFU
HTC-P2P	IFU HTC-P2P
Special adapter	IFU Special adapter

Link to Hilti Webpage

HTC-P2P	Special adapter	

Dimensions of the Connector

Parameter			HTC-P2P 90 mm M12
Assembled connector			
Length of the connector (not installed)	I	[mm]	120,0210,0
Height of the connector	h = d _e	[mm]	90,0 ±1
Width of the connector	W	[mm]	78,5 ±1
Angle of inclination of wedges	α	[°]	45,0 ±1
Internally threaded sleeve			
Outer diameter of the sleeve	d _{sl}	[mm]	≥18,0
Bolt with hexagonal head			
Size			M12
Oversized flat washer			
Outer diameter	d _{BW}	[mm]	≥58,0

HTC-P2P 90 mm M12

To install the Timber Connector HTC-P2P a cutout of defined shape must be done inside the timber member, preferentially been done by CNC machining. The cutout geometry is presented in the ETA listed in the table "Approvals / Certificates".

For more details (3d mode`ls of the cutout, etc.) please contact Hilti representative.

Wrong cutout geometry can negatively affect the performance of the HTC-P2P Connector!

CLT Configurations covered by the current Product DataSheet

The performance of the HTC-P2P Connector (Characteristic resistance, Stiffness) shall be calculated based on the effective ratio β – which is a ratio between the total thickness of layers (t_p), oriented parallel to the load direction across the embedment depth of the Connector, and the embedment depth of the Connector (d_e). The effective ratio shall be determined based on the used CLT, direction of the applied load, embedment depth of the connector and the depth of the cutout.

The pre-calculated values of effective ratios in Tension ans Shear for the selected types of CLTs that are presented in the table below are taking into account the following limitations:

- Cutout has a correct geometry (as presented in the ETA listed in the table "Approvals / Certificates") and has a depth of $d_c = 93$ mm
- Cutout orientation and direction of the applied load is matching with what presented on the sketches;

Name	CLT Configuration	Effective ratio calculation				
Panels w	ith a Single top layer					
	E KN		Tension (F _{t,d} , kN)			
		∑ t p,II,t	[mm]	$t_{p,2} + t_{p,4}$	40	
120-55	F _{t,d} , kN	βıı,t	[-]	$\sum t_{p,\text{II},t\prime}d_{e}$	0,44	
120-03				Shear (F _{v,d} , kN)		
	$\begin{array}{c} t_1 = 30 \\ t_2 = 20 \\ t_3 = 20 \\ t_4 = 20 \\ t_4 = 20 \\ t_6 = 4 \\ t_8 = 20 \\ t_8 =$	∑t _{p,II,v}	[mm]	$t_{p,1} + t_{p,3} + t_{p,5}$	50	
	$\begin{array}{c} t_5 = 30 \\ \hline \\ \end{array}$	βιι,ν	[-]	$\sum t_{p,II,v} / d_e$	0,56	
	- E. KN			Tension (F _{t,d} , kN)		
		∑ t p,II,t	[mm]	t _{p,2} + t _{p,4}	33	
	F _{t,d} , kN	βıı,t	[-]	$\sum t_{p,II,t\prime}d_e$	0,37	
140-55	$d_e = 90 d_c = 93 d_c$			Shear (F _{v,d} , kN)		
	$\begin{array}{c} t_{1} = 40 \\ t_{2} = 20 \\ t_{3} = 20 \\ t_{4} = 20 \\ t_{5} = 20 \\ t_{5} = 20 \\ t_{5} = 12 \\ t_{5} = 20 \\ t_{5} = 20 \\ t_{5} = 20 \\ t_{5} = 20 \\ t_{5} = 12 $	∑t _{p,II,v}	[mm]	t _{p,1} + t _{p,3}	57	
	$t_s = 40$	βιι,ν	[-]	$\sum t_{p,II,v} / d_e$	0,63	
	F _{v,d} , kN			Tension (F _{t,d} , kN)		
		∑ t p,II,t	[mm]	t _{p,2}	20	
	$f_{t,d}$, kN	βıı,t	[-]	$\sum t_{p,II,t} / d_e$	0,22	
100-55				Shear (F _{v,d} , kN)		
	$\begin{array}{c} t_1 = 40 \\ t_2 = 20 \\ t_3 = 40 \end{array}$	∑ t p,II,v	[mm]	t _{p,1} + t _{p,3}	70	
	$\begin{array}{c} t_4 - 20 \\ t_5 = 40 \end{array}$	βıı,v	[-]	$\sum t_{p,II,v} / d_e$	0,78	

Name	CLT Configuration	Effective ratio calculation					
Panels w	ith a Double top layer						
	F _{v,d} , kN		1	Tension (F _{t,d} , kN)			
		∑ t p,II,t	[mm]	t _{p,3}	33		
	F _{t,d} , kN	βıı,t	[-]	∑t _{p,II,t} / de	0,37		
160-5ss	$d_e = 90$ $d_c = 93$			Shear (F _{v,d} , kN)			
	$\begin{array}{c} t_{1} & 0 \\ t_{2} & 30 \\ t_{3} & 40 \end{array}$	∑t _{p,II,v}	[mm]	t _{p,1} + t _{p,2}	57		
	$\begin{array}{c} t_4 = 30 \\ t_5 = 30 \end{array}$	βıı,v	[-]	$\sum t_{p,II,v}/d_e$	0,63		
	F _{v,d} , kN		·	Tension (F _{t,d} , kN)			
		∑ t p,II,t	[mm]	t _{p,3}	20		
	F _{t,d} , kN	βıı,t	[-]	$\sum t_{p,II,t\prime}d_e$	0,22		
200-7ss	$d_e = 90$ $d_c = 93$	Shear (F _{v,d} , kN)					
	$t_1 = 30$ $t_2 = 30$ $t_3 = 20$ $t_4 = 13$	∑ t p,II,v	[mm]	$t_{p,1} + t_{p,2} + t_{p,4}$	70		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β ι ι,ν	[-]	$\sum t_{p,II,v}/d_e$	0,78		
	F _{v,d} , kN			Tension (F _{t,d} , kN)			
		∑t _{p,II,t}	[mm]	t _{p,3}	13		
	Ft.d. KN	βıı,t	[-]	$\sum t_{p,II,t\prime}d_e$	0,14		
220-7ss			I	Shear (F _{v,d} , kN)			
220-755	$t_1 = 40$ $t_2 = 40$ $t_2 = 40$ $t_2 = 40$	∑ t _{p,II,v}	[mm]	$t_{p,1} + t_{p,2}$	67		
	$\begin{array}{c} t_{3} = 20 \\ t_{4} = 20 \\ t_{5} = 20 \\ t_{6} = 40 \\ t_{7} = 40 \end{array}$	βιι,ν	[-]	∑t _{p,II,v} / de	0,86		

Note:

 $\sum t_{p,II,t}, \sum t_{p,II,v}$ – total thickness of the layers, oriented parallel to the load direction across the embedment depth of the Connector, in direction of Tension (F_{t,d}) or Shear (F_{v,d}) load

CLTs that are compatible with the HTC-P2P Connector are presented in the ETA-24/1199 that is referenced in the table "Approvals / Certificates". For specific design cases and for additional information on the Product's performance – please refer to the HTC-P2P Technical Guide, ETA-24/1199 or Hilti design tool

Static and quasi-static loading based on ETA-24/1199. Design according to EOTA TR 085

All data in this section applies to:

- Correct setting (See Instruction for use)
- Service class 1 or 2 acc.to EN 1995-1-1
- The moisture level of the connector should be less than %18 as mentioned in the IFU
- Values are valid for a single connector
- No edge distance and spacing influence (see the section "Setting information")
- CLT panels with:
 - Minimum strength class of lamellas is C16, average strength class of lamellas is C24 according to EN 338
 - Cutout has a correct geometry (as presented in the ETA referenced in the table "Approvals / Certificates") and has a depth of d_c = 93 mm
 - Cutout orientation and direction of the applied load is matching with what presented on the sketches in the Section above
 - Effective ratio, as specified in the tables of this section

Calculations are done with:

- Modification factor k_{mod} = 0,9 (Short-term actions acc.to Table 3.1 EN 1995-1-1);
- Partial safety factor for the material property $\gamma_M = 1,3$ (Connections, acc. to Table 2.3 EN 1995-1-1);

For specific design cases (including other CLT configurations and thickness) and for additional information on the Product's performance – please refer to the HTC-P2P Technical Guide, ETA-24/1199 or Hilti design tool

Design resistance

Connector type	HTC-P2P 90 mm M12							
CLT configuration			Si	ngle top lay	/er	Double top layer		
(number of top layers, name	e)		120-5S	140-5S	160-5S	160-5SS	200-7SS	220-7SS
Tension								
Effective ratio in Tension	βII,t	[-]	0,44	0,37	0,22	0,37	0,22	0,14
Design resistance	R _{t,d}	[kN]	27,2	27,2	27,2	18,8	17,1	16,2
Slip modulus	kser,t	[kN/mm]	6,7	6,8	7,0	6,9	7,6	8,0
Shear								
Effective ratio in Shear	β _{II,v}	[-]	0,56	0,63	0,78	0,63	0,78	0,86
Design resistance	$R_{v,d}$	[kN]	28,9	30,4	33,6	28,3	31,6	33,3
Slip modulus	kser,v	[kN/mm]	8,4	8,8	9,6	9,7	11,2	12,0

Seismic loading based on ETA-24/1199. Design according to EOTA TR 085

All data in this section applies to:

- Correct setting (See Instruction for use)
- Service class 1 or 2 acc.to EN 1995-1-1
- The moisture level of the connector should be less than %18 as mentioned in the IFU
- Values are valid for a single connector
- No edge distance and spacing influence (see the section "Setting information")
- CLT panels with:
 - Minimum strength class of lamellas is C16, average strength class of lamellas is C24 according to EN 338
 - Cutout has a correct geometry (as presented in the ETA referenced in the table "Approvals / Certificates") and has a depth of d_c = 93 mm
 - Cutout orientation and direction of the applied load is matching with what presented on the sketches in the Section above
 - Effective ratio, as specified in the tables of this section

Calculations are done with:

- Modification factor k_{mod} = 1,1 (Instantaneous actions acc.to Table 3.1 EN 1995-1-1);
- Reduction factor $\alpha_{seis} = 1,0$ (acc.to ETA-24/1199);
- Partial safety factor for the material property:
 - \circ γ_{M} = 1,3 for the DCL (low ductility) class in case of Tension load
 - \circ γ_M = 1,0 for the DCM (medium ductility) class in case of Shear load

For specific design cases (including other CLT configurations and thickness) and for additional information on the Product's performance – please refer to the HTC-P2P Technical Guide, ETA-24/1199 or Hilti design tool

Design resistance										
Connector type				HTC-P2P 90 mm M12						
CLT configuration			Si	ngle top lay	/er	Double top layer				
(number of top layers,name)			120-5S	140-5S	160-5S	160-5SS	200-7SS	220-7SS		
Tension										
Effective ratio in Tension	βıı,t	[-]	0,44	0,37	0,22	0,37	0,22	0,14		
Design resistance	$R_{t,Ed}$	[kN]	33,3	33,3	33,3	23,0	20,9	19,8		
Shear										
Effective ratio in Shear	β _{II,v}	[-]	0,56	0,63	0,78	0,63	0,78	0,86		
Design resistance	R _{v,Ed}	[kN]	46,0	48,3	53,4	45,0	50,2	53,0		

Fire resistance based on ETA-24/1199. Design according to EOTA TR 085

All data in this section applies to:

- Correct setting (See Instruction for use)
- Service class 1 or 2 acc.to EN 1995-1-1
- The moisture level of the connector should be less than %18 as mentioned in the IFU
- Values are valid for a single connector
- No edge distance and spacing influence (see the section "Setting information")
- Charring of the CLT occurs only in the area ≥20 mm below the Connector
- CLT panels with:
 - Minimum strength class of lamellas is C16, average strength class of lamellas is C24 according to EN 338
 - Cutout has a correct geometry (as presented in the ETA referenced in the table "Approvals / Certificates") and has a depth of d_c = 93 mm
 - Cutout orientation and direction of the applied load is matching with what presented on the sketches in the Section above
 - Effective ratio, as specified in the tables of this section

Calculations are done with:

- Temperature-dependent reduction factor $k_{\theta} = 1,0$;
- Modification factor k_{mod,fi} = 1,0;
- Modification factor for the strength property k_{fi} = 1,1;
- Partial safety factor for the material property γ_{M,fi} = 1,0 (Accidental combinations, acc. to Table 2.3 EN 1995-1-1);

The current section doesn't cover the calculations that are needed to ensure:

- The load-bearing function of the CLT panels (criterion R);
- Separating function of the CLT: Integrity (criterion E), and, when requested, Insulation (criterion I) related to the shape of the joint and width of the gap;
- Required time of fire exposure

For specific design cases (including other CLT configurations and thickness) and for additional information on the Product's performance – please refer to the HTC-P2P Technical Guide, ETA-24/1199 or Hilti design tool.

Design resistance

Connector type	HTC-P2P 90 mm M12							
CLT configuration			Single top layer			Double top layer		
(number of top layers, name)			120-5S	140-5S	160-5S	160-5SS	200-7SS	220-7SS
Tension								
Effective ratio in Tension	βıı,t	[-]	0,44	0,37	0,22	0,37	0,22	0,14
Design resistance	R _{t,d,fi}	[-]	43,2	43,2	43,2	29,9	27,2	25,7
Shear								
Effective ratio in Shear	β _{II,v}	[-]	0,56	0,63	0,78	0,63	0,78	0,86
Design resistance	R _{v,d,fi}	[-]	46,0	48,3	53,4	45,0	50,2	53,0

Setting information

Connector type			HTC-P2P 90 mm M12
Tension loads			
Minimum edge distance Minimum end distance ¹⁾	a _{4,t} = a _{4,c}	[mm]	250
Minimum spacing ¹⁾	a _{1,t}	[mm]	500
Shear loads			
Minimum edge distance Minimum end distance ¹⁾	a _{3,t} = a _{3,c}	[mm]	300
Minimum spacing ¹⁾	a _{1,v}	[mm]	300
Tension and Shear loads			
Cutout depth ²⁾	dc	[mm]	93105
Embedment depth of the Connector	de	[mm]	90
Minimum base material thickness	t _{clt}	[mm]	120

 Minimum edge, end distances and spacing must be ensured in order to reach the capacity of the Connector (Resistance, Stiffness) as presented in the sections above;

2) Maximum cutout depth is limited by the length of the installation tool

Installation parameters

a) In case of Tension loads:

b) In case of Shear loads:

Drilling and Installation equipment

For detailed setting information on installation see instructions for use given with the product.

