

Holzverbinder HCW

Technical Handbuch

Update: März 2022

Holzverbinder HCW

Schnelleres und effizienteres Holzverbindersystem zur Montage von vorgefertigten Holzkonstruktionen

Inhaltsverzeichnis

Systemteile	2
Untergrundmaterial	
Produktabmessungen	
Bemessungsinformation - Übersicht	5
Grundlagen der Bemessung	8
Informationen zum HCW und HCW-L	10
Lastwerte für den Widerstand	10
Abkürzungsverzeichnis	19
Setzanweisungen	21
Quellenverzeichnis	22

Systemteile

Holzverbinder

Holzverbinder HCW 37x45 M12 und Setzwerkzeug HCW

Holzverbinder HCW L 40x295 M12

Stockschraube (für Befestigung in Holz)

Stockschraube HSW M12x220/60 8.8

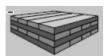
Dübel (für Befestigung in Beton)

Bolzenanker HST3 M12x ... (ETA-98/0001)

Ankerstange HAS-U M12x ... in Kombination mit HIT Injektionsmörtel

Lastbedingungen

Untergrundmaterial


Beton (ungerissen) (g

Beton (gerissen)

Vollholz

Brettsperrholz

Brettschicht-holz

Statisch / quasistatisch

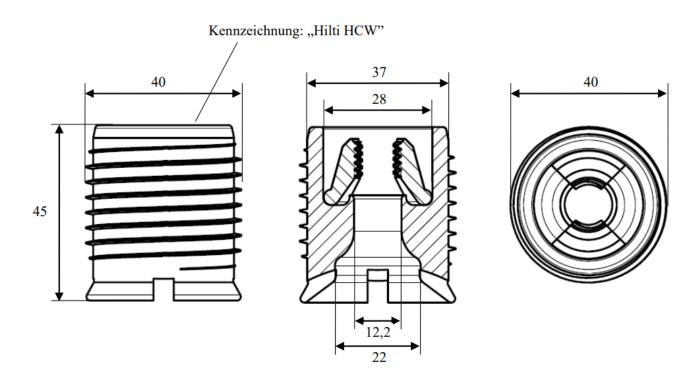
Sonstige Informationen

CE Konformität

Zulassungen

Bezeichnung	Behörde / Labor	Nr. / Ausgabedatum
Europäische Technische Bewertung	ETA-Danmark A/S	ETA-21/0357 / 19-04-2021

a) Alle in diesem Abschnitt angegebenen Daten entsprechen der ETA-21/0357, Ausgabe vom 19-04-2021.

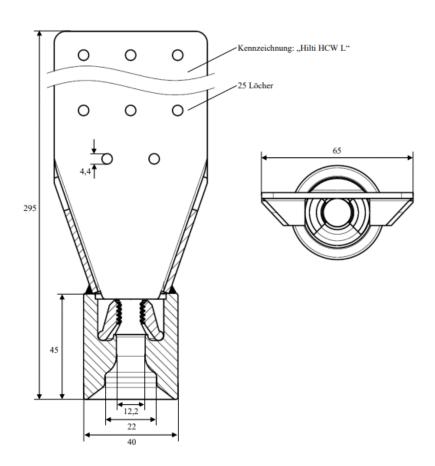

Produktabmessungen

Holzverbinder HCW

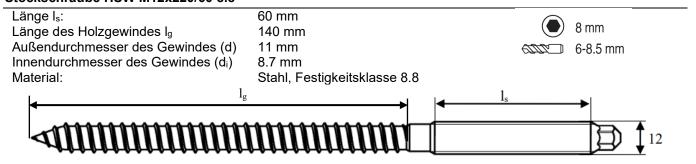
Außendurchmesser: 40 mm 37 mm Durchmesser des Körpers: Länge: 45 mm Material:

Hülse:

11SMNPB30+C gemäß EN10277 11SMNPB30, 16MnCrS5+C gemäß EN10277; Galvanisch verzinkt ≥ 5 μm Klemmgerät:



Holzverbinder HCW L


Außendurchmesser der Hülse: 40 mm
Länge der Hülse: 45 mm
Länge: 295 mm
Breite der Platte: 65 mm
Dicke der Platte 2,5 mm
Durchmesser der Plattenlöcher 4,4 mm

Material:

 Hülse und Nagelplatte: S335J2 gemäß EN10277
 Klemmgerät: 16MnCrS5+C gemäß EN10277; Galvanisch verzinkt ≥ 5 μm

Stockschraube HSW M12x220/60 8.8

Bemessungsinformation - Übersicht

Tragfähigkeiten von Holz-Holz-Verbindung

Zugkräfte:

Maßgebend für den maximalen Widerstand für Zugkraft ist der minimale Wert wie folgt:

Nachweis Zugtragfähigkeit HCW und Stockschraube:

$$F_{ax,\alpha,Ed} \leq F_{ax,\alpha,Rd}$$

$$F_{ax,\alpha,Rd} = min \begin{cases} \frac{k_{mod}F_{ax,Rk; HCW}}{\gamma_{M}} \\ \frac{F_{t,Rk; HCW}}{\gamma_{M,2}} \\ \frac{k_{mod}F_{ax,Rk; Stockschraube}}{\gamma_{M}} \\ \frac{F_{t,Rk; Stockschraube}}{\gamma_{M,2}} \end{cases}$$

mit

 $F_{ax,Rk; HCW}$: Tragfähigkeit auf Herausziehen HCW ... siehe Tabelle 6 und Tabelle 7 $F_{t,R; HCW}$: Tragfähigkeit auf Zug HCW: $F_{t,Rk,HCW} = 37,5$ kN (siehe ETA 21/0357)

Fax,Rk; Stockschraube: Tragfähigkeit auf Herausziehen Stockschraube ... siehe Tabelle 8 undTabelle 9

Ft,Rk; Stockschraube: Tragfähigkeit auf Zug Stockschraube ... siehe Seite 13

k_{mod} siehe Tabelle 1, Tabelle 2 und Tabelle 3

 γ_M siehe Tabelle 4

 $\gamma_{M,2}$ siehe Grundlagen der Bemessung aus EN 1993-1-1

Querkräfte:

Die Berechnung der Gesamtverbindung erfolgt nach EN 1995-1-1 anhand der Johansenformel für einschnittige Holzverbindungen.

Nachweis Abscheren des HCW:

$$F_{v,Ed} \le \frac{k_{mod} F_{v,Rk;HCW}}{\gamma_M}$$

Nachweis Abscheren der Stockschraube:

$$F_{v,Ed} \leq \frac{k_{mod}F_{v,Rk;Stockschraube}}{\gamma_{M}}$$

F_{v,Rk; HCW}: charakteristische Tragfähigkeit auf Abscheren des HCW ... siehe Tabelle 10

F_{v,Rk;} Stockschraube: charakteristische Tragfähigkeit auf Abscheren der Stockschraube ... siehe Tabelle 11,

Tabelle 12, Tabelle 13 und Tabelle 14

k_{mod} siehe Tabelle 1, Tabelle 2 und Tabelle 3

γ_M siehe Tabelle 4

Tragfähigkeiten von Holz-Beton-Verbindung

In den nachfolgenden Bemessungstabellen für Betondübel wurden zwei Anwendungsfälle (HST3 und HIT HY200 + HAS-U 8.8) kalkuliert. Für abweichende Anwendungsfälle nutzen Sie bitte unser Bemessungsprogramm PROFIS Engineering.

Zugkräfte:

Nachweis Zugtragfähigkeit HCW:

$$F_{ax.\alpha.Ed} \leq F_{ax.\alpha.Rd}$$

$$F_{ax,\alpha,Rd} = min \begin{cases} \frac{k_{mod}F_{ax,Rk; HCW}}{\gamma_{M}} \\ \frac{F_{t,Rk; HCW}}{\gamma_{M,2}} \end{cases}$$

Nachweis Zugtragfähigkeit des Betondübels:

$$N_{Ed} \leq min \begin{cases} \frac{N_{Rk,s}}{\gamma_{Ms}} \\ \frac{N_{Rk,c}}{\gamma_{Mc}} \\ \frac{N_{Rk,p}}{\gamma_{Mp}} \\ \frac{N_{Rk,sp}}{\gamma_{Msp}} \end{cases}$$

 $F_{ax,Rk;\;HCW}$: Tragfähigkeit auf Herausziehen HCW ... siehe Tabelle 6 und Tabelle 7 $F_{t,Rk;\;HCW}$: HCW Tragfähigkeit auf Zug: $F_{t,Rk,HCW}$ = 37,5 kN (siehe ETA 21/0357)

Charakteristische Zugtragfähigkeit Betondübel:

N_{Rk,s} Stahlbruch des Befestigungselements ... siehe Tabelle 15

N_{Rk,c} Kegelförmiger Betonausbruch ... siehe Tabelle 16

N_{Rk,p} Herausziehen des Befestigungselementes (Bolzenanker) ... siehe Tabelle 17

N_{Rk,p} Kombiniertes Versagen durch Herausziehen und Betonbruch (Verbunddübel) ... sieheTabelle 18

k_{mod} siehe Tabelle 1, Tabelle 2 und Tabelle 3

 γ_M siehe Tabelle 4

 $\gamma_{M,2}$ siehe Grundlagen der Bemessung aus EN 1993-1-1

 γ_{Ms} , γ_{Mc} , γ_{Mp} und γ_{Msp} siehe Tabelle 5

Querkräfte:

Nachweis Abscheren des HCW:

$$F_{v,Ed} \leq F_{v,Rd}$$

$$F_{v,Rd} = \frac{k_{mod}F_{v,Rk;HCW}}{\gamma_M}$$

Nachweis Abscheren des Betondübels:

$$V_{Ed} \leq min \begin{cases} \frac{V_{Rk,s}}{\gamma_{Ms}} \\ \frac{V_{Rk,s,M}}{\gamma_{Ms}} \\ \frac{V_{Rk,cp}}{\gamma_{Mc}} \\ \frac{V_{Rk,c}}{\gamma_{Mc}} \end{cases}$$

F_{v,Rk; HCW}: charakteristische Tragfähigkeit auf Abscheren des HCW ... siehe Tabelle 10

charakteristische Tragfähigkeit auf Abscheren des Betondübels:

 $V_{Rk,s}$ Stahlbruch ohne Hebelarm ... siehe Tabelle 19 $V_{Rk,s,M}$ Stahlbruch mit Hebelarm ... siehe Tabelle 20

V_{Rk,cp} Betonausbruch auf der lastabgewandten Seite ... siehe Tabelle 21

V_{Rk,c} Betonkantenbruch ... siehe Tabelle 22

k_{mod} siehe Tabelle 1, Tabelle 2 und Tabelle 3

 γ_M siehe Tabelle 4

 γ_{Ms} und γ_{Mc} siehe Tabelle 5

Grundlagen der Bemessung

Grundlagen der Bemessung aus EN 1995-1-1

Informationen zu nationalen Anforderungen können im Nationalen Anhang enthalten sein

Lasteinwirkungsdauer							
Klasse der Lasteinwirkungsdauer	Größenordnung der akkumulierten Dauer der charakteristischen Lasteinwirkung	Beispiele für Lasteinwirkung					
Ständig	Länger als 10 Jahre	Eigengewicht					
Lang	6 Monate – 10 Jahre	Lagerstoffe					
Mittel	1 Woche – 6 Monate	Verkehrslasten, Schnee					
Kurz	Kürzer als eine Woche	Schnee, Wind					
Sehr kurz		Wind und außergewöhnliche Einwirkungen					

Tabelle 1: Klassen der Lasteinwirkungsdauer und Beispiele für die Zuordnung (EN 1995-1-1 Tabelle 2.1 und 2.2)

Nutzungsklassen

Die Nutzungsklasse 1 ist gekennzeichnet durch einen Feuchtegehalt in den Baustoffen, der einer Temperatur von 20 °C und einer relativen Luftfeuchte der umgebenden Luft entspricht, die nur für einige Wochen je Jahr einen Wert von 65 % übersteigt.

ANMERKUNG In Nutzungsklasse 1 übersteigt der mittlere Feuchtegehalt der meisten Nadelhölzer nicht 12 %.

Die Nutzungsklasse 2 ist gekennzeichnet durch einen Feuchtegehalt in den Baustoffen, der einer Temperatur von 20 °C und einer relativen Luftfeuchte der umgebenden Luft entspricht, die nur für einige Wochen je Jahr einen Wert von 85 % übersteigt.

ANMERKUNG In Nutzungsklasse 2 übersteigt der mittlere Feuchtegehalt der meisten Nadelhölzer nicht 20 %.

Die Nutzungsklasse 3 erfasst Klimabedingungen, die zu höheren Feuchtegehalten als in Nutzungsklasse 2 führen.

Tabelle 2: Nutzungsklassen (EN 1995-1-1 Kapitel 2.3.1.3)

	Werte für k _{mod}							
			Klasse der Lasteinwirkungsdauer					
Baustoff	Norm	Nutzungs- klasse	Ständige Einwir- kung	Lange Einwir- kung	Mittlere Einwir- kung	Kurze Einwir- kung	Sehr kurze Einwir- kung	
		1	0.60	0.70	0.80	0.90	1.10	
Vollholz	EN 14081-1	2	0.60	0.70	0.80	0.90	1.10	
		3	0.50	0.55	0.65	0.70	0.90	
Death	EN 14080	1	0.60	0.70	0.80	0.90	1.10	
Brett-		2	0.60	0.70	0.80	0.90	1.10	
schichtholz		3	0.50	0.55	0.65	0.70	0.90	
Furnier-	EN14074	1	0.60	0.70	0.80	0.90	1.10	
schichtholz	EN14374, EN 14279	2	0.60	0.70	0.80	0.90	1.10	
(LVL)	EN 14219	3	0.50	0.55	0.65	0.70	0.90	
	EN 636	1	0.60	0.70	0.80	0.90	1.10	
Cus a walls a low	Typ EN 636-1	2	0.60	0.70	0.80	0.90	1.10	
Sperrholz	Typ EN 636-2 Typ EN 636-3	3	0.50	0.55	0.65	0.70	0.90	

Tabelle 3: Werte für kmod (EN 1995-1-1 Tablle 3.1)

Empfohlene Teilsicherheitsbeiwerte γ _M					
Grundkombination:					
Vollholz	1.3				
Brettschichtholz	1.25				
LVL, Sperrholz, OSB	1.2				
Spanplatten	1.3				
Harte Faserplatten	1.3				
Mittelharte Faserplatten	1.3				
MDF-Faserplatten	1.3				
Weiche Faserplatten	1.3				
Verbindungen	1.3				
Nagelplatten (Stahleigenschaften)	1.25				
Außergewöhnliche Kombinationen	1.0				

Tabelle 4: Empfohlene Teilsicherheitsbeiwerte γ_M für Baustoffeigenschaften und Beanspruchbarkeiten (EN 1995-1-1 Tabelle 2.3)

Grundlagen der Bemessung aus EN 1993-1-1

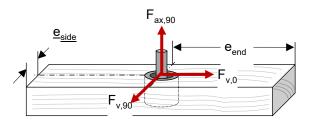
Informationen zu nationalen Anforderungen können im Nationalen Anhang enthalten sein

 y_{M2} = 1.25 Teilsicherheitsbeiwert für die Beanspruchbarkeit von Querschnitten bei Bruchversagen infolge Zugbeanspruchung nach EN 1993-1-1 Kapitel 6.1

Grundlagen der Bemessung aus EN 1992-4

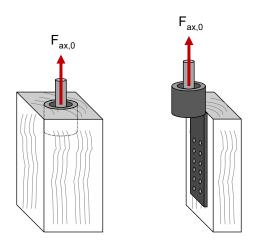
Informationen zu nationalen Anforderungen können im Nationalen Anhang enthalten sein

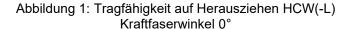
	Teilsicherheitsbeiwert						
Versagensart	Ständige und vorübergehende	Außergewöhnliche					
	Bemessungssituation	Bemessungssituation					
Stahlversagen - Befest	tigungselement						
Zuglast	γ _{Ms} = 1.5 (siehe ETA-98/0001 bzw. ETA-11/0	0493)					
Querlast	γ _{Ms} = 1.25 (siehe ETA-98/0001 bzw. ETA-11	/0493)					
Betonversagen							
Betonausbruch,	$\gamma_{Mc} = \gamma_c \cdot \gamma_{inst}$	$\gamma_{Mc} = \gamma_c \cdot \gamma_{inst}$					
Betonkantenbruch,	γ _c = 1.5	γ _c = 1.2					
lokaler	für seismische Reparatur und Verstärkung	für seismische Reparatur und					
Betonausbruch,	von bestehenden Gebäuden siehe EN	Verstärkung von bestehenden Gebäuden					
Betonausbruch auf der	1998	siehe EN 1998					
lastabgewandten Seite	γ _{inst} = 1.0 (siehe ETA-98/0001 bzw. ETA-11/	0493)					
Betonspalten	$\gamma_{Msp} = \gamma_{Mc}$						
Versagensart							
Herausziehen und							
kombinierte	=						
Versagensart	$\gamma_{Mp} = \gamma_{Mc}$						
Herausziehen und							
Betonbruch							


Tabelle 5: Empfohlene Teilsicherheitsbeiwerte (EN 1992-4 Tabelle 4.1)

Informationen zum HCW und HCW-L

Die Werte der Tragfähigkeit auf Herausziehen bzw Abscheren für den HCW wurden in den nachfolgenden Seiten für folgenden den Anwendungsfall angenommen:




Mindestquerschnitt ≥100x45 mm² e_{end} ≥ 200mm e_{side} ≥ 40mm

Für abweichende Anwendungsfälle entnehmen Sie die Werte der Tragfähigkeit bitte der ETA 21/0357.

Lastwerte für den Widerstand

Tragfähigkeit auf Herausziehen HCW & HCW-L für Konstruktionsvollholz (KVH), Brettsperrholz (BSP) und Brettschichtholz (BSH)

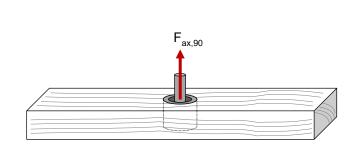


Abbildung 2: Tragfähigkeit auf Herausziehen HCW Kraftfaserwinkel 90°

Die Tragfähigkeit auf Herausziehen in Abhängigkeit der Rohdichte des Holzes wird wie folgt berechnet:

$$F_{ax,\alpha,Rk,\rho_a;\;HCW} = \left(\frac{\rho_k = 350}{\rho_a}\right)^{0.8} \cdot F_{ax,\alpha,Rk,HCW}$$
 (ETA-21/0357, Anhang C)

Dabei ist:

$$F_{ax,0, Rk; HCW} = 10.4 kN$$

 $F_{ax,90, Rk; HCW}$ = 12.7 kN bei einer Rohdichte von ρ_k = 350kg/m³

Tragfähigkeit auf Herausziehen HCW und HCW-L für Konstruktionsvollholz und Brettsperrholz							
		Н	CW	HC	W-L		
Kraftfase	rwinkel	0°	90°	0°, 15 Nägel	0°, 25 Nägel		
KVH/ BSP	Rohdichte ρ _k [kg/m³]	F _{ax,0,Rk}	F _{ax,90,Rk}	F _{ax,0,Rk}	F _{ax,0,Rk}		
C14	290	8.9	10.9	21.1	30.2		
C16	310	9.4	11.5	22.2	31.9		
C18	320	9.7	11.8	22.8	32.7		
C20	330	9.9	12.1	23.4	33.5		
C22	340	10.2	12.4	23.9	34.3		
C24	350	10.4	12.7	24.5	35.1		
C27	360	10.6	13.0	25.1	35.9		
C30	380	11.1	13.6	26.2	37.5		
C35	390	11.3	13.8	26.7	38.3		
C40	400	11.6	14.1	27.3	39.1		
C45	410	11.8	14.4	27.8	39.8		
C50	430	12.3	15.0	28.9	41.4		

Tabelle 6: Charakteristische Werte der Tragfähigkeit auf Herausziehen des HCW in Konstruktionsvollholz oder Brettsperrholz in Abhängigkeit der Holzdichte in kN

Tragfähigkeit auf Herausziehen HCW und HCW-L für Brettschichtholz								
H			CW	HC	W-L			
Kraftfas	erwinkel	0°	90°	0°, 15 Nägel	0°, 25 Nägel			
BSH	Rohdichte ρ _k [kg/m³]	F _{ax,0,Rk}	F _{ax,90,Rk}	F _{ax,0,Rk}	F _{ax,0,Rk}			
GL24h	385	11.2	13.7	26.4	37.9			
GL28h	425	12.1	14.8	28.6	41.0			
GL30h	430	12.3	15.0	28.9	41.4			
GL32h	440	12.5	15.3	29.4	42.2			
GL24c	365	10.8	13.1	25.3	36.3			
GL28c	390	11.3	13.8	26.7	38.3			
GL30c	390	11.3	13.8	26.7	38.3			
GL32c	400	11.6	14.1	27.3	39.1			

Tabelle 7: Charakteristische Werte der Tragfähigkeit auf Herausziehen des HCW in Brettschichtholz in Abhängigkeit der Holzdichte in kN

Tragfähigkeit auf Herausziehen Stockschraube für Konstruktionsvollholz (KVH), Brettsperrholz (BSP) und Brettschichtholz (BSH)

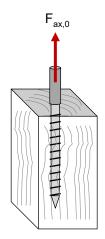


Abbildung 3: Tragfähigkeit auf Herausziehen Stockschraube Kraftfaserwinkel α = 0°

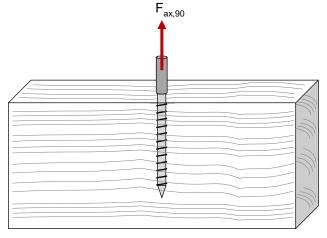


Abbildung 4: Tragfähigkeit auf Herausziehen Stockschraube Kraftfaserwinkel α = 90°

Berechnung nach EN 1995:

Kraftfaserwinkel α = 90°:

$$F_{ax,\alpha,Rk;\,Stockschraube} = \frac{n_{ef} \cdot f_{ax,k} \cdot d \cdot l_{ef}}{1,2 \cdot cos^2 \alpha + sin^2 \alpha} \left(\frac{\rho_k}{\rho_a}\right)^{0.8} \tag{EN 1995-1-1 (8.40a)}$$

Dabei ist

$$f_{ax,k} = 0.52 \ d^{-0.5} l_{ef}^{-0.1} \rho_k^{0.8}$$
 (EN 1995-1-1 (8.39))

Kraftfaserwinkel $\alpha = 0^{\circ}$:1

$$F_{ax,\alpha,Rk;Stockschraube} = \frac{k_{ax} \cdot n_{ef} \cdot f_{ax,k} \cdot d \cdot l_{ef}}{1,2 \cdot \cos^2 \alpha + \sin^2 \alpha} \left(\frac{\rho_k}{\rho_a}\right)^{0.8}$$

ETA 21/0357 Anhang C

Dabei ist

$$k_{ax} = 0.3 + \frac{0.7 \cdot \alpha}{45^{\circ}} < 1$$

ETA 21/0357 Anhang C

¹ Gilt nur für KLED (Klasse der Lasteinwirkungsdauer) kurz bzw. sehr kurz

Trag	Tragfähigkeit auf Herausziehen Stockschraube für Konstruktionsvollholz und Brettsperrholz										
Einbindetie	fe l _{ef} [mm]	6	60	8	30	1	00	1	20	140	
Kraftfaserw	/inkel	0°	90°	0°	90°	0°	90°	0°	90°	0°	90°
KVH/BSP	Rohdichte ρ _k [kg/m³]	F _{ax,0,Rk}	F _{ax,90,Rk}								
C14	290	1.9	6.4	2.5	8.3	3.0	10.2	3.6	12.0	4.1	13.7
C16	310	2.0	6.8	2.6	8.8	3.2	10.7	3.8	12.6	4.3	14.5
C18	320	2.1	6.9	2.7	9.0	3.3	11.0	3.9	12.9	4.5	14.9
C20	330	2.1	7.1	2.8	9.2	3.4	11.3	4.0	13.3	4.6	15.2
C22	340	2.2	7.3	2.8	9.4	3.5	11.5	4.1	13.6	4.7	15.6
C24	350	2.2	7.5	2.9	9.7	3.5	11.8	4.2	13.9	4.8	16.0
C27	360	2.3	7.6	3.0	9.9	3.6	12.1	4.3	14.2	4.9	16.3
C30	380	2.4	8.0	3.1	10.3	3.8	12.6	4.5	14.9	5.1	17.1
C35	390	2.4	8.1	3.2	10.5	3.9	12.9	4.5	15.2	5.2	17.4
C40	400	2.5	8.3	3.2	10.7	3.9	13.1	4.6	15.5	5.3	17.8
C45	410	2.5	8.5	3.3	11.0	4.0	13.4	4.7	15.8	5.4	18.1
C50	430	2.6	8.8	3.4	11.4	4.2	13.9	4.9	16.4	5.7	18.8

Tabelle 8: Charakteristische Werte der Tragfähigkeit auf Herausziehen der Stockschraube für Konstruktionsvollholz oder Brettsperrholz in Abhängigkeit der Holzdichte und der Gewindelänge kN; Werte für Kraftfaserwinkel 0° gelten nur für KLED kurz bzw. sehr kurz

	Tragfähigkeit auf Herausziehen Stockschraube für Brettschichtholz										
Einbindetiefe l _{ef} [mm]		6	60	8	80 100		120		140		
Kraftfase	erwinkel	0°	90°	90°	0°	90°	0°	90°	0°	90°	0°
BSH	Rohdichte ρ _k [kg/m³]	F _{ax,0,Rk}	F _{ax,90,Rk}								
GL24h	385	2.4	8.0	3.1	10.4	3.8	12.7	4.5	15.0	5.2	17.2
GL28h	425	2.6	8.7	3.4	11.3	4.1	13.8	4.9	16.2	5.6	18.7
GL30h	430	2.6	8.8	3.4	11.4	4.2	13.9	4.9	16.4	5.7	18.8
GL32h	440	2.7	8.9	3.5	11.6	4.3	14.2	5.0	16.7	5.8	19.2
GL24c	365	2.3	7.7	3.0	10.0	3.7	12.2	4.3	14.4	5.0	16.5
GL28c	390	2.4	8.1	3.2	10.5	3.9	12.9	4.5	15.2	5.2	17.4
GL30c	390	2.4	8.1	3.2	10.5	3.9	12.9	4.5	15.2	5.2	17.4
GL32c	400	2.5	8.3	3.2	10.7	3.9	13.1	4.6	15.5	5.3	17.8

Tabelle 9: Charakteristische Werte der Tragfähigkeit auf Herausziehen der Stockschraube für Brettschichtholz in Abhängigkeit der Holzdichte und der Gewindelänge kN; Werte für Kraftfaserwinkel 0° gelten nur für KLED kurz bzw. sehr kurz

Charakteristische Zugfestigkeit der Stockschraube

Berechnung nach EN 1995:

$$F_{t,Rk;Stockschraube} = n_{ef} f_{tens,k}$$
 (EN 1995-1-1 (8.40c))

$$f_{tens,k} = 300 \cdot \pi \cdot \frac{d_i^2}{4} = 300 \cdot \pi \cdot \frac{8.7^2}{4} \cdot 10^{-3} = 17.83kN$$
 (DIN 20000-6: 2015-02, (8))

$$F_{t,Rk;Stockschraube} = 1 \cdot 17.83 = 17.83kN$$

HCW Tragfähigkeit auf Abscheren (Lochleibungsfestigkeit) für Konstruktionsvollholz (KVH), Brettsperrholz (BSP) und Brettschichtholz (BSH)

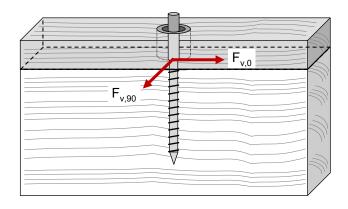


Abbildung 5: Tragfähigkeit auf Abscheren HCW Kraftfaserwinkel 90°

Werte gemäss ETA 21/0357.

Tragfähigkeit auf Abscheren HCW für KVH, BSH und CLT					
Force-fiber-angle	0°	90°			
	F _{v,0,Rk}	F _{v,90,Rk}			
	28.8	12.5			

Tabelle 10: Charakteristische Werte der Tragfähigkeit auf Abscheren des HCW für Konstruktionsvollholz, Brettschichtholz und Brettsperrholz in kN

Stockschraube Tragfähigkeit auf Abscheren für Konstruktionsvollholz (KVH), Brettsperrholz (BSP) und Brettschichtholz (BSH)

Berechnung nach EN 1995 Kapitel 8.2.3 (Stahl-Holz-Verbindungen)

$$F_{v,Rk;Stockschraube} = min \begin{cases} f_{h,k}t_1d \\ \int_{h,k}^{2} t_1d \left[\sqrt{2 + \frac{4M_{y,Rk}}{f_{h,k}dt_1}} - 1 \right] + \frac{F_{ax,Rk}}{4} \\ 2.3\sqrt{M_{y,Rk}f_{h,k}d} + \frac{F_{ax,Rk}}{4} \end{cases}$$
 (EN 1995-1-1 (8.10) i ist

Dabei ist

$$f_{h,\alpha,k} = \frac{f_{h,0,k}}{k_{90}sin^2\alpha + cos^2\alpha}$$
 (EN 1995-1-1 (8.31))

$$f_{h,0,k} = 0.082(1 - 0.01d)\rho_k$$
 (EN 1995-1-1 (8.32))

Dabei ist

$$d = d_{ef} = 1.1 \cdot d_i$$
 (EN 1995-1-1 Kapitel 8.7.1)

$$k_{90} = \begin{cases} 1{,}35 + 0{,}015d & \text{für Nadelh\"olzer} \\ 1{,}30 + 0{,}015d & \text{f\"ur Furnierschichtholz LVL} \\ 0{,}90 + 0{,}015d & \text{f\"ur Laubh\"olzer} \end{cases}$$
 (EN 1995-1-1 (8.33))

$$M_{y,Rk} = 0.3 f_{u,k} d^{2.6}$$
 (EN 1995-1-1 (8.30))

Dabei wird für $f_{u,k} = 400 \text{ N/mm}^2$ angesetzt

(DIN 20000-6: 2015-02, Kapitel 3.3.3)

In den Gleichungen 8.10 (d) und (e) bedeutet der erste Summand auf der rechten Seite die Tragfähigkeit nach Johansens Fließtheorie, während der zweite Summand $F_{ax,Rk}/4$ den Anteil aus der Seilwirkung enthält. Der Anteil der Seilwirkung an der Tragfähigkeit ist auf 100 Prozent des Anteils nach der Johansen-Theorie zu begrenzen.

für Konstruktionsvollholz und Brettsperrholz, Einbindetiefe Stockschraube t₁=80mm						
HCW						
Kraftfa	serwinkel	0°	90°			
KVH/BSP	Rohdichte ρ _k [kg/m³]	min F _{v,0,Rk}	min F _{v,90,Rk}			
C14	290	6.6	7.0			
C16	310	6.9	7.3			
C18	320	7.0	7.4			
C20	330	7.1	7.6			
C22	340	7.2	7.7			
C24	350	7.3	7.8			
C27	360	7.4	8.0			
C30	380	7.7	8.2			
C35	390	7.8	8.3			
C40	400	7.9	8.5			
C45	410	8.0	8.6			
C50	430	8.2	8.8			

Tranföhigkeit auf Absoberen Stockschroube

Tabelle 11: Charakteristische minimale Werte der Tragfähigkeit auf Abscheren der Gesamtverbindung in kN für Konstruktionsvollholz oder Brettsperrholz mit einer Einbindetiefe der Stockschraube von t_1 = 80mm

Tragfähigkeit auf Abscheren Stockschraube für Brettschichtholz, Einbindetiefe Stockschraube t₁=80mm				
		Н	CW	
Kra	ftfaserwinkel	0°	90°	
BSH	Rohdichte ρ _k [kg/m³]	F _{v,0,Rk}	F _{v,90,Rk}	
GL24h	385	7.7	8.3	
GL28h	425	8.1	8.8	
GL30h	430	8.2	8.8	
GL32h	440	8.3	9.0	
GL24c	365	7.5	8.0	
GL28c	390	7.8	8.3	
GL30c	390	7.8	8.3	
GL32c	400	7.9	8.5	

Tabelle 12: Charakteristische minimale Werte der Tragfähigkeit auf Abscheren der Gesamtverbindung in kN für Brettschichtholz mit einer Einbindetiefe der Stockschraube von t₁ = 80mm

Tragfähigkeit auf Abscheren Stockschraube für Konstruktionsvollholz und Brettsperrholz, Einbindetiefe Stockschraube t₁=140mm

	iotioio otook	HCW		
Kraftfaserwinkel		0°	90°	
KVH/BSP	Rohdichte ρ _k [kg/m³]	min F _{v,0,Rk}	min F _{v,90,Rk}	
C14	290	7.0	8.4	
C16	310	7.3	8.7	
C18	320	7.4	8.9	
C20	330	7.6	9.1	
C22	340	7.7	9.2	
C24	350	7.8	9.4	
C27	360	7.9	9.6	
C30	380	8.2	9.9	
C35	390	8.3	10.1	
C40	400	8.4	10.2	
C45	410	8.5	10.4	
C50	430	8.7	10.7	

Tabelle 13: Charakteristische minimale Werte der Tragfähigkeit auf Abscheren der Gesamtverbindung in kN für Konstruktionsvollholz oder Brettsperrholz mit einer Einbindetiefe der Stockschraube von t₁ = 140mm

Tragfähigkeit auf Abscheren Stockschraube für Brettschichtholz, Einbindetiefe Stockschraube t₁=140mm				
Kraft	faserwinkel	0°	90°	
BSH	Rohdichte ρ _k [kg/m³]	F _{v,0,Rk}	F _{v,90,Rk}	
GL24h	385	8.2	10.0	
GL28h	425	8.7	10.6	
GL30h	430	8.7	10.7	
GL32h	440	8.9	10.9	
GL24c	365	8.0	9.7	
GL28c	390	8.3	10.1	
GL30c	390	8.3	10.1	
GL32c	400	8.4	10.2	

Tabelle 14: Charakteristische minimale Werte der Tragfähigkeit auf Abscheren der Gesamtverbindung in kN für Brettschichtholz mit einer Einbindetiefe der Stockschraube von t₁ = 140mm

Betondübel Zugtragfähigkeit - Stahlbruch des Befestigungselementes

Betondübel	Zulassung	N _{Rk,s} [kN]
HST3 M12	ETA-98/0001	45.0
HIT HY200 mit Ankerstange HAS-U 8.8 M12	ETA-11/0493	67.4

Tabelle 15: Charakteristische Werte des Zugfähigkeit des Betondübels – Stahlbruch des Befestigungselementes

Betondübel Zugtragfähigkeit - Kegelförmiger Betonausbruch

Berechnung nach EN 1992-4 Kapitel 7.2.1.4

$$N_{Rk,c} = N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec,N} \cdot \psi_{M,N}$$
(EN 1992-4 (7.1))

$$N_{Rk,c}^0 = k_1 \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5}$$
 (EN 1992-4 (7.2))

$$A_{c,N}^0 = s_{cr,N} \cdot s_{cr,N} \tag{EN 1992-4 (7.3)}$$

$$s_{cr,N} = 2c_{cr,N} = 3h_{ef}$$

$$A_{c,N} = (c_1 + s_1 + 0.5 \cdot s_{cr,N}) \cdot (c_2 + s_2 + 0.5 \cdot s_{cr,N})$$

Wenn

$$c_1 und c_2 \le c_{cr,N}$$

 $s_1 und s_2 \le s_{cr,N}$

Betondübel	Zulassung	h _{ef} [mm]	c ₁ und c ₂ [mm]	N _{Rk,c} [kN]
HST3 M12	ETA-98/0001	70	55	10.0
HIT HY200 mit Ankerstange HAS-U 8.8 M12	ETA-11/0493	70	50	9.3

Tabelle 16: Charakteristische Werte der Zugtragfähigkeit des Betondübels – Kegelförmiger Betonausbruch für C20/25 gerissener Beton

Betondübel Zugtragfähigkeit – Versagen durch Herausziehen des Befestigungselements (für Bolzenanker)

Betondübel	Zulassung	h _{ef} [mm]	N _{Rk,p} [kN]
HST3 M12	ETA-98/0001	70	20.0

Tabelle 17: Charakteristische Werte des Zugfähigkeit des Betondübels – Versagen durch Herausziehen des Befestigungselements für C20/25 gerissener Beton

Betondübel Zugtragfähigkeit – Kombiniertes Versagen durch Herausziehen und Betonbruch (für Verbunddübel)

Berechnung nach EN 1992-4 Kapitel 7.2.1.6

$$N_{Rk,p} = N_{Rk,p}^{0} \cdot \frac{A_{p,N}}{A_{p,N}^{0}} \cdot \psi_{g,Np} \cdot \psi_{s,Np} \cdot \psi_{re,N} \cdot \psi_{ec,Np}$$
(EN 1992-4 (7.13))

$$N_{Rk,p}^{0} = \psi_{sus} \cdot \tau_{Rk} \cdot \pi \cdot d \cdot h_{ef}$$
 (EN 1992-4 (7.14))

$$s_{cr,Np} = 7.3d(\psi_{sus}\tau_{Rk})^{0.5} \le 3h_{ef}$$
 (EN 1992-4 (7.15))

$$c_{cr,Np} = \frac{s_{cr,Np}}{2}$$
 (EN 1992-4 (7.16))

$$\psi_{g,Np} = \psi_{g,Np}^0 - \left(\frac{s}{s_{cr,Np}}\right)^{0.5} \cdot \left(\psi_{g,Np}^0 - 1\right) \ge 1 \tag{EN 1992-4 (7.17)}$$

Mit

$$\psi_{g,Np}^{0} = \sqrt{n} - (\sqrt{n} - 1) \cdot \left(\frac{\tau_{Rk}}{\tau_{Rk,c}}\right)^{1.5} \ge 1$$
 (EN 1992-4 (7.18))

$$\tau_{Rk,c} = \frac{k_3}{\pi \cdot d} \sqrt{h_{ef} \cdot f_{ck}}$$
(EN 1992-4 (7.19))

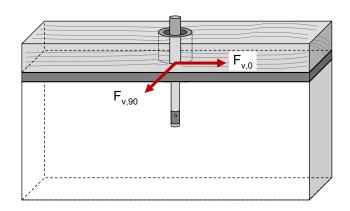
$$\psi_{s,Np} = 0.7 + 0.3 \cdot \left(\frac{c}{c_{cr,Np}}\right) \le 1$$
 (EN 1992-4 (7.20))

$$\psi_{ec,Np} = \frac{1}{1 + 2 \cdot (\frac{e_N}{S_{cr,Np}})} \le 1$$
 (EN 1992-4 (7.21))

Betondübel	Zulassung	h _{ef} [mm]	τ _{Rk,cr} [N/mm²]	c ₁ und c ₂ [mm]	N _{Rk,p} [kN]
HIT HY200 mit Ankerstange HAS-U 8.8 M12	ETA-11/0493	70	8.5	50	11.2

Tabelle 18: Charakteristische Werte des Zugtragfähigkeit des Betondübels – Kombiniertes Versagen durch Herausziehen und Betonbruch für C20/25 gerissener Beton mit Ψ_{sus}=1

Betondübel Tragfähigkeit auf Abscheren ohne Hebelarm


Berechnung nach EN 1992-4 Kapitel 7.2.2.3.1

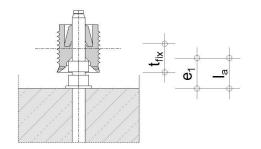
$$V_{Rk,s} = k_7 \cdot V_{Rk,s}^0$$
 (EN 1992-4 (7.35))

Stahlbruch, Querlast ohne Hebelarm					
Betondübel	Zulassung	Effektive Verankerung- stiefe [mm]	Charakteristischer Widerstand V _{Rk,s} in [kN]	Duktilitäts- faktor k ₇ [-]	Charakteristischer Widerstand V _{Rk,s} in [kN]
HST3 M12	ETA-98/0001	70	35.0	1.0	35.4
HIT HY200 mit Ankerstange HAS-U 8.8 M12	ETA-11/0493	70	33.7	1.0	33.7

Tabelle 19: Charakteristische Werte des Tragfähigkeit auf Abscheren des Betondübels – Stahlbruch ohne Hebelarm

Betondübel Tragfähigkeit auf Abscheren mit Hebelarm

Berechnung nach EN 1992-4 Kapitel 7.2.2.3.2


$$V_{Rk,s,M} = \frac{\alpha_M \cdot M_{Rk,s}}{l_a}$$
 (EN 1992-4 (7.37))

wobei

$$M_{Rk,s} = M_{Rk,s}^0 \cdot \left(1 - \frac{N_{Ed}}{N_{Rd,s}}\right)$$
 (EN 1992-4 (7.38))

$$l_a = a_3 + e_1$$
 (EN 1992-4 (6.2))

$$a_3 = 0$$
 (EN 1992-4 Kapitel 6.2.2.3)

$$e_1 = \frac{t_{fix}}{2} + t_{Grout}$$

$$\alpha_{\rm M} = 2.0$$
 (EN 1992-4 Kapitel 6.2.2.3)

Für den HCW ist $t_{fix} = 27.5mm$

Betondübel	Zulassung	Charakteristischer Widerstand M _{Rk,s} in [Nm]	Mörtel- fugendicke t _{Grout} [mm]	Effektiver Hebelarm I _a [mm]	Charakteristischer Scherwiderstand mit Mörtelfuge V _{Rk,s,M} [kN]
			10	23.75	8.8
HST3 M12	ETA-98/0001	105.0	20	33.75	6.2
			30	43.75	4.8
HIT HY200 mit			10	23.75	8.8
Ankerstange HAS-U	ETA-11/0493	104.6	20	33.75	6.2
8.8 M12			30	43.75	4.8

Tabelle 20: Charakteristische Werte des Tragfähigkeit auf Abscheren des Betondübels – Stahlbruch mit Hebelarm (mit N_{Ed}=0)

Betondübel Tragfähigkeit auf Abscheren - Betonausbruch auf der lastabgewandten Seite

Berechnung nach EN 1992-4 Kapitel 7.2.2.4

$$V_{Rk,cp} = k_8 \cdot N_{Rk,c}$$
 (EN 1992-4 (7.39a))

Betondübel	Zulassung	h _{ef} [mm]	c ₁ und c ₂ [mm]	V _{Rk,cp} [kN]
HST3 M12	ETA-98/0001	70	55	27.9
HIT HY200 mit Ankerstange HAS-U 8.8 M12	ETA-11/0493	70	50	18.5

Tabelle 21: Charakteristische Werte des Tragfähigkeit auf Abscheren des Betondübels – Betonausbruch auf der lastabgewandten Seite

Betondübel Tragfähigkeit auf Abscheren - Betonkantenbruch

Berechnung nach EN 1992-4 Kapitel 7.2.2.5

$$V_{Rk,c} = V_{Rk,c}^{0} \cdot \frac{A_{c,V}}{A_{c,V}^{0}} \cdot \psi_{s,V} \cdot \psi_{h,V} \cdot \psi_{ec,V} \cdot \psi_{a,V} \cdot \psi_{re,V}$$
(EN 1992-4 (7.40))

$$V_{Rk,c}^{0} = k_9 \cdot d_{nom}^{\alpha} \cdot l_f^{\beta} \cdot \sqrt{f_{ck}} \cdot c_1^{1.5}$$
 (EN 1992-4 (7.41))

$$\alpha = 0.1 \cdot \left(\frac{l_f}{c_1}\right)^{0.5}$$
 (EN 1992-4 (7.42))

$$\beta = 0.1 * \left(\frac{d_{nom}}{c_1}\right)^{0.2}$$
 (EN 1992-4 (7.43))

Betondübel	Zulassung	h _{ef} = I _f [mm]	V _{Rk,c} [kN]
HST3 M12	ETA-98/0001	70	4.7
HIT HY200 mit Ankerstange HAS-U 8.8 M12	ETA-11/0493	70	4.1

Tabelle 22: Charakteristische Werte des Tragfähigkeit auf Abscheren des Betondübels – Betonausbruch auf der lastabgewandten Seite für C20/25 gerissener Beton

Abkürzungsverzeichnis

Große lateinische Buchstaben

 A_s Spannungsquerschnitt eines Befestigungselements $F_{\mathsf{ax},\mathsf{Ed}}$ Bemessungswert der Kraft in Achsrichtung des Verbindungsmittels Bemessungswert der Tragfähigkeit auf Herausziehen des Verbindungsmittels $F_{ax,Rd}$ Charakteristischer Wert der Tragfähigkeit auf Herausziehen des Verbindungsmittels $F_{ax,Rk}$ $F_{t,Rk}$ Charakteristische Tragfähigkeit auf Zug der Verbindung Charakteristischer Wert der Tragfähigkeit pro Scherfuge und Verbindungsmittel; $F_{V,Rk}$ $M_{y,Rk}$ Charakteristischer Wert des Fließmomentes des Verbindungsmittels Charakteristischer Widerstand für den Versagensfall Betonausbruch bei Zuglast $N_{Rk,c}$ $N_{Rk,p}$ Charakteristischer Widerstandfür den Versagensfall Herausziehen bei Zuglast Charakteristischer Wert für die Festigkeit des Stahls eines Befestigungselementes oder einer $N_{Rk,s}$ Spezialschraube bei Zuglast $V_{Rk,c}$ Charakteristischer Widerstand für den Versagensfall Betonkantenbruch bei Querlast Charakteristischer Widerstand für den Versagensfall Betonausbruch auf der lastabgewandten Seite bei $V_{Rk,cp}$ Querlast

 $V_{Rk,s}$ Charakteristischer Wertfür die Festigkeit des Stahls eines Befestigungselementes oder einer Spezialschraube bei Querlast

 $V_{Rk,s,M}$ Charakteristischer Widerstand für den Versagensfall Stahlbruch mit Hebelarm bei Querlast

 W_{el} Elastisches Widerstandsmoment, berechnet aus dem Spannungsquerschnitt

Kleine lateinische Buchstaben

c₁ Randabstand in Richtung1

c₂ Randabstand in Richtung 2, dabei ist Richtung 2 senkrecht zur Richtung 1

c_{cr,N} Charakteristischer Randabstand zur Sicherstellung der Übertragung des charakteristischen Widerstandes (c_{cr,V}) eines einzelnen Befestigungselementes oder eines Ankers einer Ankerschiene bei Zuglast im Falle eines Betonausbruchs (Betonkantenausbruch bei Scherbeanspruchung)

d Durchmesser; Gewindeaußendurchmesser von Schrauben

*d*_{nom} Außendurchmesser des Befestigungselementes

e₁ Abstand zwischen Querlast und Betonoberfläche

f_{ax,k} Charakteristischer Wert der Ausziehfestigkeit auf der Seite der Nagelspitze; charakteristischer Wert der Ausziehfestigkeit

*f*_{ck} Nennwert der charakteristischen Zylinderdruckfestigkeit (150mm Durchmesser über 300mm Höhe)

f h,i,k Charakteristischer Wert der Lochleibungsfestigkeit des Holzteils i

f_{tens,k} Der charakteristische Zugwiderstand der Schraube

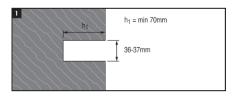
 f_{uk} Nennwert dercharakteristischen Zugfestigkeit des Stahls

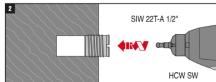
*h*_{ef} wirksame Verankerungstiefe

*k*_d Dimensionsbeiwert für Platten

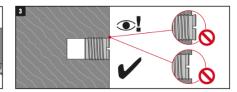
- k_{mod} Modifikationsbeiwert für Lasteinwirkungsdauer und Feuchtegehalt
- *l*_a Wirksamer Hebelarm der Querkraft, die auf das Befestigungselement oder auf die Ankerschiene wirkt (siehe Bild6.6), in der Berechnung verwendet
- lef Wirksame Länge; wirksame Länge einer Verteilung
- *n*_{ef} Wirksame Anzahl von Verbindungsmitteln
- t Dicke
- t_{fix} Dicke des Anbauteils
- t_i Dicke die Holz- oder Holzwerkstoffdicke oder Einbindetiefe, mit *i* entweder 1 oder 2
- t_{arout} Dicke des Mörtelbettes

Kleine griechische Buchstaben

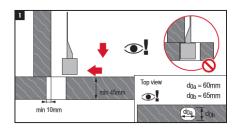

- α Winkel zwischen der *x*-Richtung und der Kraft bei einer Nagelplatte; Winkel zwischen Kraft und Faserrichtung; Winkel zwischen der Kraftrichtung und dem beanspruchten Hirnholzende oder Rand
- β Winkel zwischen Faserrichtung und der Kraftrichtung bei einer Nagelplatte
- γ_M Teilsicherheitsbeiwert für eine Baustoffeigenschaft, unter Berücksichtigung der Modellunsicherheiten und von geometrischen Abweichungen
- γ_{M,c} Teilsicherheitsbeiwert für die Versagensarten Betonausbruch, Betonkantenbruch, lokaler Betonausbruch und Betonausbruch auf der lastabgewandten Seite
- γ_{M,s} Teilsicherheitsbeiwert für Stahlbruch
- γ_{M2} Teilsicherheitsbeiwert für die Beanspruchbarkeit von Querschnitten bei Bruchversagen infolge Zugbeanspruchung
- ψ_{ec,N} Faktor zur Berücksichtigung der Auswirkung auf die Gruppe für den Versagensfall Betonausbruch, wenn auf die einzelnen Befestigungselemente der Gruppe unterschiedliche Zuglasten einwirken
- ψ_{ec,Np} Faktor zur Berücksichtigung der Auswirkung auf die Gruppe für den kombinierten Versagensfall Herausziehen und Betonausbruch bei Verbunddübeln, wenn auf die einzelnen Befestigungselemente der Gruppe unterschiedliche Zuglasten einwirken
- ψ_{ec,V} Faktor zur Berücksichtigung der Auswirkung auf die Gruppe für den Versagensfall Betonkantenbruch, wenn auf die einzelnen Befestigungselemente der Gruppe unterschiedliche Querlasten einwirken
- $\psi_{g,Np}$ Faktor zur Berücksichtigung der Auswirkung auf die Gruppe für Verbunddübel mit engem Achsabstand
- $\psi_{\text{h,V}}$ Faktor zur Berücksichtigung der Tatsache, dass der Widerstand gegen Betonkantenbruch nicht proportional mit der Bauteildicke steigt
- ψ_{M,N} Faktor zur Berücksichtigung der Auswirkung von Druckkräften zwischen dem Anbauteil und dem Beton, im Fall von Biegemomenten mit oder ohne Axialkraft
- ψ_{s,N} Faktor zur Berücksichtigung der Störung des Spannungszustands im Beton durch die Nähe eines Randes im Betonbauteil, für den Versagensfall Betonausbruch
- ψ_{s,Np} Faktor zur Berücksichtigung der Störung des Spannungszustands im Beton durch die Nähe eines Randes im Betonbauteil, für den kombinierten Versagensfall Herausziehen und Betonausbruch bei Verbunddübeln
- ψ_{s,V} Faktor zur Berücksichtigung der Störung des Spannungszustands im Beton durch die Nähe eines Randes im Betonbauteil, für den Versagensfall Betonkantenbruch
- ρ_a Zugehöriger Wert der Rohdichte
- ρ_k charakteristischer Wert der Rohdichte


Setzanweisungen

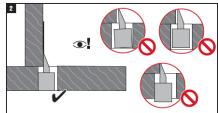
Installation des HCW


 Ausnehmung in Holzwerkstoff fräsen

2. HCW Holzverbinder mit dem Setzwerkzeug setzen

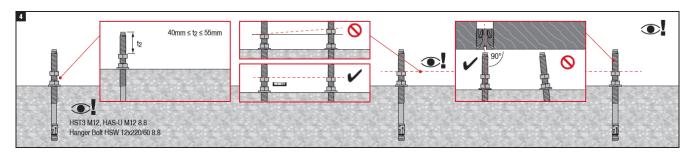


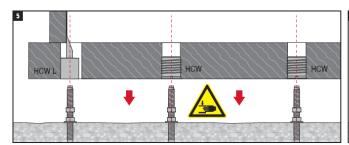
3. Überprüfen

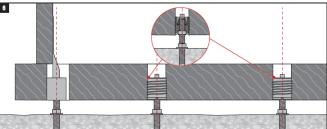


Installation des HCW-L


1. Positionieren des HCW-L


2. Überprüfen


3. Befestigung des Nagelblechs



4. Installierten Dübel / Stockschraube prüfen und nivellieren

5. Wandelement mit vormontieren HCW Holzverbindern mit Dübeln / Stockschrauben verbinden

Quellenverzeichnis

Verwendete Normen und ETA Dokumente

EN 1992-4:2019-04	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken, Teil 4
EN 1993-1-1:2010-12	Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-1
EN 1995-1-1:2010-12	Eurocode 5: Bemessung und Konstruktion von Holzbauteilen, Teil 1-1
ETA-98/0001 vom 04.05.2021	Hilti Metallspreizanker HST, HST-R, HST-HCR, HST3, HST3-R
ETA-11/0493 vom 14.12.2020	Injektionssystem Hilti HIT-HY 200-A
ETA-21/0357 vom 19.04.2021	Befestigungselement Hilti HCW, HCW L
DIN 20000-6:2015-02	Anwendung von Bauprodukten in Bauwerken – Teil 6: Stiftförmige und nicht stiftförmige Verbindungsmittel nach DIN EN 14592 und DIN EN 14545